
Center for Exascale Radiation Transport!PSAAP II Kick-off!

CERT

0

Center for Exascale Radiation Transport!Center for Exascale Radiation Transport!

Toward Exascale Computing with STAPL
Lawrence Rauchwerger

Parasol Lab, Computer Science and Engineering

PSAAP II Kick-off Meeting, Dec. 9 – Dec. 10, 2013

Center for Exascale Radiation Transport!PSAAP II Kick-off!

CERT

1 1

Goal: Exa-code for Parallel Deterministic
Transport

1.  State of the Parallel Det. Transport code (PDT): Peta"
2.  Intro to STAPL – a C++ high level parallel library"
3.  Roadmap from Peta to Exa "
4.  Taking STAPL from Peta to Exa"
5.  Building an Exa PDT on top of STAPL using TAXI"
6.  Beyond PDT: Our contributions to Comp Sci at

Exascale "
"

Center for Exascale Radiation Transport!PSAAP II Kick-off!

CERT

2 2

Exa – Peta … where is PDT now ?

Ø Previously developed PDT using PTTL library"
§  Scale to 128k cores!

Ø Currently developing PDT using STAPL library"
§  STAPL is general purpose parallel library!
§  75 K LOC in PDT only!
§  Scales upto 393k processors on BG/Q (Sequoia)!

Ø Exploit space (geometry) level parallelism "
§  Sequence of parallel sweeps across the *rectangular* grids!
 with Pipelined directions!
§  Asynchronous (step wise) communication!
§  No fault tolerance!
§  Homogeneous computer system (BG/Q) – no accelerators!

Ø Our software environment : STAPL …"

Center for Exascale Radiation Transport!PSAAP II Kick-off!

CERT

3

STAPL: Standard Template Adaptive Parallel Library

Ø  STL
§  Iterators provide abstract access

to data stored in Containers.

§  Algorithms are sequences of
instructions that transform the data.

Ø  STAPL
§  pViews provide abstracted access to

distributed data stored in pContainers.

§  pAlgorithms specified by PARAGRAPHs,
parallel task graphs that transform the
input data.
§  Can use existing PARAGRAPHs, defined

in collection of common parallel patterns.
§  Extensible - users can define new patterns.

A library of parallel components that adopts the generic programming
philosophy of the C++ Standard Template Library (STL).

Algorithms ContainersIterators

pAlgorithms pContainerspViews

PARAGRAPHs

Center for Exascale Radiation Transport!PSAAP II Kick-off!

CERT

4 4

Programming Model with STAPL

Ø STAPL Programming Model."
§  High Level of Abstraction ~ similar to C++ STL!
§  Fine grain expression of parallelism – can be coarsened !
§  Implicit parallelism – Serialization is explicit!
§  Distributed Memory Model (PGAS)!
§  Algorithms defined by!

•  Data Dependence Patterns (Library)"
•  Distributed containers "
•  Execution policies (scheduling, data distributions, etc)"

§  Algorithm run-time representation: Task Graphs (PARAGRAPHs)!

Center for Exascale Radiation Transport!PSAAP II Kick-off!

CERT

5

pAlgorithms are PARAGRAPHS

inner_product(View1 v1,
View2 v2) {

 return map_reduce(

 multiplies(),plus(),

 v1, v2

);

}

•  inner_product() specified by
PARAGRAPH."

•  Employs map_reduce parallel pattern."

•  Defines a new pattern we can use to
compose a nested PARAGRAPH."

* * * *

+ +

+

v1 v2

Center for Exascale Radiation Transport!PSAAP II Kick-off!

CERT

6 6

PARAGRAPH Composition

matvec(View2D A, View1D x) {
 using functional::inner_product;
 return map_func(inner_product(), full_overlap(x), A.rows());
}

* * * *

+ +

+

* * * *

+ +

+

* * * *

+ +

+

* * * *

+ +

+

Matrix Vector Multiplication

View transformations and
PARAGRAPH reuse in
composition enable an "
exact, succinct specification  
of matvec task graph."

Center for Exascale Radiation Transport!PSAAP II Kick-off!

CERT

7 7

Example: NAS CG in STAPL

cg_iteration(View2D A, View1D p, Ref rho, …) {
 q = A * p;
 alpha = rho / inner_product(q, p);
 new_z = z + alpha * p;
 new_r = r - alpha * q;
 new_rho = inner_product(new_r, new_r);
 beta = new_rho / rho;
 new_p = new_r + beta * p;
 …
}

Ø  Operator overloads call pAlgorithms: A * p è matvec(A, p)"
Ø  Sequence composition is non blocking:  

Specification proceeds concurrently with execution.!
Ø  NO Barriers – Only point-to-point communication/synchro!
"

Ø  For simplicity / space, we next consider just the first two statements."

Center for Exascale Radiation Transport!PSAAP II Kick-off!

CERT

8 8

Example: Sequence Composition - CG

q = A * p;

alpha =
rho/inner_product(q, p);

* * * *

+ +

+

* * * *

+ +

+

* * * *

+ +

+

* * * *

+ +

+

/

rho

A
p

alpha

q

* * * *

+ +

+

8

Matvec() pAlgorithm on
2D_view of pMatrix and
1D_view of pArray.!

Inner product of two 1D_view
views whose scalar result is
divisor of dividend rho.!

Expressive syntax quickly yields
nested/hierarchical PARAGRAPHs.!

Center for Exascale Radiation Transport!PSAAP II Kick-off!

CERT

9

NAS EP Peta – Scalability Sanity Check

Ø  LLNL BlueGene/Q System"
§  16-core PowerPC A2 processor

per node!
§  16GB RAM per node!
§  Nodes connected in 5-D torus!

Ø NAS EP"
§  Transforms stream of uniformly

distributed random numbers into
normally distributed stream.!

§  Combines statistics of each
processor’s output stream to
validate.!

Ø STAPL implementation
scales as well as native
Fortran+MPI to one million
cores."

Center for Exascale Radiation Transport!PSAAP II Kick-off!

CERT

10

Where is PDT Now ? In PETA

Center for Exascale Radiation Transport!PSAAP II Kick-off!

CERT

11 11

Our Roadmap from Peta to Exa

Immediate Plans:"
Ø Exa scalable STAPL "
Ø Fault tolerant STAPL è fault tolerant DSL & PDT "
Ø TAXI: A Domain Specific Library (DSL) for Rad.

Transport (built on top of STAPL)"
Ø Longer Term: "
Ø Adaptive STAPL è Adaptive PDT (all levels !)"

§  Tunable granularity: Fine !" Coarse Grain Algorithms!
§  Communication aggregation!
§  Load balancing!
§  Use a fraction of processors for monitor/control performance!

Ø Study Approximate methods for TAXI (and STAPL) to
improve scalability, in context of UQ"

Center for Exascale Radiation Transport!PSAAP II Kick-off!

CERT

12 12

Some features for Exa-scalable STAPL

Ø Asynchronous Algorithms (a bit later)"
Ø Nested/Hierarchical parallelism (parallel algorithms)"
Ø Extension to heterogeneous architectures - GPUs"
Ø Special support for "

§  AMR (space/angle)!
§  Arbitrary grids, sparse data structures!

Ø Adaptive behavior"
§  Granularity control of tasks (data + work) !

! Fine !" Coarse Grain Parallel Algorithms Morphing!
§  Communication/Synch aggregation AND Customization(pt2pt)!

Ø Algorithmic Composition for Productivity & Performance
(skeleton library + composition operators)"

"

Center for Exascale Radiation Transport!PSAAP II Kick-off!

CERT

13 13

Asynchronous Algorithms & Communication

Ø Asynchrony è Latency Hiding "

Ø Asynch communication: STAPL: ARMI comm. Library"
§  Asynch active messages – never waits for a return value. !
§  Futures – place holders for return values not yet computed but

needed for current evaluation (increases asynchrony).!
§  Recursively nested communication subgroups (and

subcontainer registration) " locality, load balancing + affinity,
work reduction (efficiency) !
!!

Ø Asynchronous Algorithms – not an easy task …"
"

Center for Exascale Radiation Transport!PSAAP II Kick-off!

CERT

14

Asynch Algos: K-level Asynchronous BFS

Ø Removing synchs more important at higher proc. counts

Center for Exascale Radiation Transport!PSAAP II Kick-off!

CERT

15 15

Nested, Hierarchical Algos and RT

Ø Nested parallelism:"
 While{forall (reduce (sweep (….)))}!
Ø Hierarchical parallelism (algos): nested and mapped

onto the machine memory hierarchy"
 forall (view_i, forall (view_j, wf{})) where view_i = U{view_j} "

 mapped hierarchically on machine hierarchy (Locales)"
Ø Support for various Runtime Systems (MPI/OpenMP/

Pthreads…recursive constructs)"
Ø Nested/Hierarchical ! Latency reduction (locality) +

Expressivity (and productivity)!

Center for Exascale Radiation Transport!PSAAP II Kick-off!

CERT

16 16

Support for Heterogeneous Architectures

Ø Storage: STAPL is distributed and GPU means another
address space (Locale)"

Ø Algos+Code: GPUs use different code, algorithms than
CPU (needs engineering) "

Ø STAPL: Allows global memory tracking– all data
structures have GIDs."

Ø STAPL will enable simpler programming but not make
compiler/user level decisions. "

Center for Exascale Radiation Transport!PSAAP II Kick-off!

CERT

17 17

 Peta to Exa: Fault tolerance via STAPL

Ø STAPL – distributed virtualized system makes it easier"
Ø Fault tolerant STAPL components è Fault tolerant

composed program"
Ø Fault Detection: extend ARMI + other techniques"
Ø Fault Recovery: Distributed Checkpoints + Task graph

replication "
§  Groups of re-work processors/memory(plenty of them) !
§  Paragraphs with built-in replication/redundancy!
§  See Manteuffel’s coarse grain replication of data (CU)!

Open Question:"
Ø  Fault resilient algorithms: error çè fault tolerance "

Center for Exascale Radiation Transport!PSAAP II Kick-off!

CERT

18 18

Open Question: Approximate Computation

Ø Increased Asynchrony requires"
§  tolerance of stale info!
§  otherwise approximating it!
§  Example: use of old data in sweeps on re-entrant graphs!

Ø Relaxation of dependences to keep computation local"
Ø Non-determinism"
Ø Tradeoff: Algorithm induced error çè performance

(parallelism) "
Ø UQ in the presence of approximate computation"

Center for Exascale Radiation Transport!PSAAP II Kick-off!

CERT

19 19

From Peta to Exa PDT by TAXI

Ø TAXI library will contain data structures and algorithms
for radiation transport"
§  Extend STAPL data structures (Graph -> Grid)!
§  Composition of Algorithms (skeletons) into transport specific

algorithms (simultaneous sweeps) !
§  BiCG, etc !
§  Composition of building blocks will allow Transport exploration!

Center for Exascale Radiation Transport!PSAAP II Kick-off!

CERT

20 20

Beyond PDT and TAXI:
 Contributions to Exascale Issues in CompSci

Ø Exa-scaled parallel *generic* library STAPL"
Ø Answers to many general questions:"

§  AMR/Arbitrary Grids!
§  Fault tolerant STAPL Library and trade-offs with speed!
§  Hierarchical/Heterogeneous parallelism mapped on H/H!
Machines!
§  Dynamic Load Balancing!
§  Transformation between Fine-Coarse grain of algorithms!
§  Asynchrony, (weaker) memory consistency and programming

productivity tradeoffs.!
Ø How to build a useful DSL"
Ø Make peta scale good for general use."
è Almost nothing presented is Transport exclusive !"
"

"

